Chiron: Privacy-preserving Machine Learning as a Service

نویسندگان

  • Tyler Hunt
  • Congzheng Song
  • Reza Shokri
  • Vitaly Shmatikov
  • Emmett Witchel
چکیده

Major cloud operators offer machine learning (ML) as a service, enabling customers who have the data but not ML expertise or infrastructure to train predictive models on this data. Existing ML-as-a-service platforms require users to reveal all training data to the service operator. We design, implement, and evaluate Chiron, a system for privacy-preserving machine learning as a service. First, Chiron conceals the training data from the service operator. Second, in keeping with how many existing ML-as-a-service platforms work, Chiron reveals neither the training algorithm nor the model structure to the user, providing only black-box access to the trained model. Chiron is implemented using SGX enclaves, but SGX alone does not achieve the dual goals of data privacy and model confidentiality. Chiron runs the standard ML training toolchain (including the popular Theano framework and C compiler) in an enclave, but the untrusted model-creation code from the service operator is further confined in a Ryoan sandbox to prevent it from leaking the training data outside the enclave. To support distributed training, Chiron executes multiple concurrent enclaves that exchange model parameters via a parameter server. We evaluate Chiron on popular deep learning models, focusing on benchmark image classification tasks such as CIFAR and ImageNet, and show that its training performance and accuracy of the resulting models are practical for common uses of ML-as-a-service.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Privacy Preserving Multi-party Machine Learning with Homomorphic Encryption

Privacy preserving multi-party machine learning approaches enable multiple parties to train a machine learning model from aggregate data while ensuring the privacy of their individual datasets is preserved. In this paper, we propose a privacy preserving multi-party machine learning approach based on homomorphic encryption where the machine learning algorithm of choice is deep neural networks. W...

متن کامل

Differentially Private Empirical Risk Minimization

Privacy-preserving machine learning algorithms are crucial for the increasingly common setting in which personal data, such as medical or financial records, are analyzed. We provide general techniques to produce privacy-preserving approximations of classifiers learned via (regularized) empirical risk minimization (ERM). These algorithms are private under the ε-differential privacy definition du...

متن کامل

PrivLogit: Efficient Privacy-preserving Logistic Regression by Tailoring Numerical Optimizers

Safeguarding privacy in machine learning is highly desirable, especially in collaborative studies across many organizations. Privacy-preserving distributed machine learning (based on cryptography) is popular to solve the problem. However, existing cryptographic protocols still incur excess computational overhead. Here, we make a novel observation that this is partially due to naive adoption of ...

متن کامل

Privacy-Preserving Ridesharing Recommendation in Geosocial Networks

Background: Geosocial networks have received a lot of attentions recently and enabled many promising applications, especially the on-demand transportation services that are increasingly embraced by millions of mobile users. Despite the well understood benefits, such services also raise unique security and privacy issues that are currently not very well investigated. Aims: We focus on the trendi...

متن کامل

The Large Margin Mechanism for Differentially Private Maximization

A basic problem in the design of privacy-preserving algorithms is the private maximization problem: the goal is to pick an item from a universe that (approximately) maximizes a data-dependent function, all under the constraint of differential privacy. This problem has been used as a sub-routine in many privacy-preserving algorithms for statistics and machine-learning. Previous algorithms for th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018